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Abstract. The authors explore the influence of the structure
of a texture image on the perception of its color composition
through a series of psychophysical studies. They estimate the color
composition of a texture by extracting its dominant colors and the
associated percentages. They then synthesize new textures with the
same color composition but different geometric structural patterns.
They conduct empirical studies in the form of two-alternative forced
choice tests to determine the influence of two structural factors,
pattern scale and shape, on the perceived amount of target color.
The results of their studies indicate that (a) participants are able to
consistently assess differences in color composition for textures of
similar shape and scale, and (b) the perception of color composition
is nonveridical. Pattern scale and shape have a strong influence
on perceived color composition: the larger the scale, the higher
the perceived amount of the target color, and the more elongated
the shape, the lower the perceived amount of the target color. The
authors also present a simple model that is consistent with the
results of their empirical studies by accounting for the reduced
visibility of the pixels near the color boundaries. In addition to a
better understanding of human perception of color composition, their
findings will contribute to the development of color texture similarity
metrics. c© 2020 Society for Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2020.3.1.010401]

1. INTRODUCTION
Texture is an important visual attribute that provides
important cues for object boundary detection and local-
ization, foreground/background separation, and material
identification [3, 26]. In this article, we explore some aspects
of texture perception that are important for the development
of texture similarity metrics [45, 59, 60], which play a key
role in engineering applications, such as image compression,
restoration, content-based retrieval, and understanding [10,
30, 40, 45, 61]. In particular, we conduct a series of
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psychophysical studies to examine the influence of the
structure of a texture image on the perception of its color
composition. By color compositionwemean the amount (area
in pixels) of each color in the image irrespective of position,
and by structure we mean their spatial arrangement.

There is a large body ofwork on texture perception in the
psychophysical literature. To a large extent, it has relied on
computer-generated or carefully constructed images, from
the pioneering work of Julesz [19, 21] and Beck [2] on
pre-attentive pattern discrimination, to more recent studies
of surface roughness perception [16, 18, 42] and surface
gloss [1, 17, 34, 39, 58]. The use of synthetic images
makes it possible to study specific aspects of texture and to
isolate the parameters and neural mechanisms that affect its
appearance. However, texture images that are encountered
in real-world applications are more complex, involve several
parameters, and as we will see, the study of their perceptual
properties raises some new questions that have not been
studied in the psychophysical literature.

1.1 Background
In the development of perceptual metrics for texture
similarity, Zujovic et al. [59, 60] combined separate estimates
of texture similarity in terms of structure and color
composition. Taking into consideration the fact that textures
can have similar structure and different color composition,
as shown in Figure 1(a), or similar color composition and
different structure, as shown in Fig. 1(b), they argued that
how these separate estimates should be combined should
depend on the observer and the application [59, 60].

Zujovic et al. [59, 60] argued that the structure of a
texture can be reasonably approximated with the structure
of the grayscale component of the image. While the
chrominance also contributes to the structure, the case where
structure is solely determined by the chrominance is possible
[56] but unlikely in natural or synthetic textures. To evaluate
the similarity of the structure of grayscale textures, they then
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(a) (b)

Figure 1. Examples of color textures with (a) similar structure and different
color composition and (b) similar color composition and different structure.

used perceptually based structural texture similarity metrics
(STSIMs) [61].

To estimate the color composition of a texture, as
perceived by a human, rather than as a histogram of
the colors of the pixels, Zujovic et al. [59, 60] adopted
the representation in terms of dominant colors and their
percentages, and used the optimal color composition distance
(OCCD) [37], which is closely related to the earth mover’s
distance (EMD) [49], to compare the color compositions of
two textures. Figure 2(a) shows an original texture image,
Fig. 2(b) shows its grayscale component, and Fig. 2(c)
shows its dominant colors. The representation of the color
composition of a texture in terms of its dominant colors
has been well established in the engineering literature [7,
29, 38, 59, 60]. We could not find any related work in
the psychophysical literature, except for the work of Kuriki
[25] on average-color perception of multicolored patterns.
Kimura [22] also considered color averaging of multicolor
mosaics into a few color categories, with emphasis on the
mean color judgments.

1.2 Proposed Approach
The key assumption in Zujovic’s approach to texture
similarity is that texture structure and color composition
are independent of each other. The goal of this article is
to test whether this assumption is consistent with human
perception and, in particular, whether the perception of color
composition is veridical and whether it is affected by the
texture structure.

We explore the influence of texture structure on the
perception of the color composition through a series
of empirical studies. While the motivation comes from
texture similarity and content-based retrieval, the problem
is interesting in its own right, and to the best of our
knowledge has not been addressed in the psychophysical
literature. Thus, while we will discuss the implications of the
conclusions of our studies for texture similarity metrics, the
main focus is on understanding the perception of the color
composition of visual textures.

To study the effects of texture structure on color com-
position, we synthesized color textures with the same color
composition as that extracted from the original texture but
with different structural patterns, and conducted empirical
studies to compare the perceived color composition of the
synthesized textures.

As in [59, 60], we estimated the color composition of
a given original texture image using the adaptive clustering
algorithm (ACA) [43] to segment the image in KACA = 4

classes based on color, and ‘‘painting’’ the segments with the
average of each class. ACA is an iterative algorithm that can
be regarded as a generalization of the K -means clustering
algorithm [28, 55] in two respects: it adapts to local variations
in image intensity and includes spatial constraints in the
form of Markov random fields (MRFs). We will refer to
the resulting image, which preserves the structure of the
original image, and consolidates the point clouds of each
dominant color into points in color space, as the posterized
texture. The posterized texture for the original texture image
of Fig. 2(a) is shown in Fig. 2(c). The color composition
of the texture consists of the (dominant) colors of this
posterized texture and their percentages, shown in Fig. 2(d).
We then synthesized textures with the same or modified
color composition.We used three types of structural patterns
for the synthetic textures: isotropic blobs, squares, and
rectangles. As in the Julesz experiments [19], the synthesized
textures were designed to eliminate familiarity cues, and the
pattern shapes were chosen to create different structures
(shape, scale) so that we can test their effect on the perceived
color composition. An example of a synthetic texture with
isotropic blobs is shown in Fig. 2(e).

We conducted three empirical studies with the synthetic
textures to determine the effects of structure on the percep-
tion of color composition. In the first study, we compared
the structure of the posterized texture with isotropic blob
synthetic textures that have varying target color percentages.
In the other two studies, we used square and rectangular
synthetic textures to investigate the effect of scale and shape
on the perceived amount of the target color. We conducted
the empirical studies in the form of two-alternative forced
choice (2AFC) tests to determine which of a pair of patterns
is perceived as containing a larger amount of a given target
dominant color. The main conclusions of our empirical
studies are that (a) participants are able to consistently assess
differences in color composition for textures of similar scale
and shape, and (b) pattern agglomeration in both scale
(larger) and shape (less elongated) has a strong positive
influence on the perceived amount of a target color. Thus,
the perception of color composition is nonveridical.

The question is then: What are the perceptual mech-
anisms that can account for the results of our empirical
studies? First, the results are consistent with Julesz’s texton
theory [20], whereby the size and shape of the textons affect
the texture perception. In Section 5, we present a simple
model that estimates the contribution of each pixel to the
perceived amount of the target color. Pixels near the blob
boundaries contribute less than pixels at the center of the
blobs. While there is a large literature on texture and color
perception, we could not find any perceptual mechanisms
that can explain such an edge effect. Here we should clarify
that the size of the color blobs in our studies was selected
so that the blobs are perceived as distinct patches of color
with sharp edges. There is no averaging across the blob
boundaries, even though a simple linear filter model based
on estimates of the spatial frequency sensitivity of the eye
(e.g., in [32]) predicts averaging over a few pixels at the given

J. Percept. Imaging 010401-2 Jan.-June 2020
IS&T International Symposium on Electronic Imaging 2020 Human Vision and Electronic Imaging



Wang et al.: Influence of texture structure on the perception of color composition

(a) (b) (c) (d) (e)

Figure 2. Texture structure and color composition. (a) Original image. (b) Grayscale texture of (a). (c) Posterized (texture segmentation with dominant
colors). (d) Color composition, most illuminant, and most distinct color. (e) Synthetic texture based on MRF model with the same color composition as (c).

display resolution and viewing distance. The perception of
sharp boundaries can be attributed to adaptation [12] or
color spreading [47], but neither provides a solid explanation.
In addition, with only a couple of exceptions, the differences
in the colors of the blobs are well above threshold in both
luminance and chrominance, so that differences in contrast
sensitivity of luminance and chrominance edges [24] and
changes in contrast sensitivity based on spatial pattern [48]
or interactions between chrominance and luminance [53]
cannot account for the observed results, and the effects of
scale in particular. Another interesting observation is that,
as in the case of texture metamers [8], all pixels in the color
blobs are clearly visible, yet their contributions to the overall
perception of color composition are different.

Webster et al. [57] and Maule and Franklin [36]
conducted experiments with ensembles of distinct color
blobs, like ours, but in regular formations of color circles.
However, the emphasis was on the perception of the average
color rather than the color composition.

1.3 Related Work
Objective descriptors of the color composition of an image
have been extensively studied in the image retrieval literature
over the past decades. The most straightforward way for
describing the color content of an image is via a color
histogram; two images are then compared using a histogram
distance metric [50, 52]. Manjunath et al. [31] review
three descriptors based on histogram representation for
the MPEG-7 standard: the scalable color descriptor, the
dominant color descriptor, and the color layout descriptor.
The scalable color descriptor is a color histogram of an image
encoded based on the Haar transform. The dominant color
descriptor describes the colors of an image using a small
number of dominant color values and the related statistical
properties. The color layout descriptor captures the spatial
distribution of dominant colors based on the discrete cosine
transform (DCT).

The use of dominant colors and associated percentages
as a compact color representation for image analysis was
introduced by Ma et al. [29] and Deng et al. [9] and
adopted by Mojsilovic et al. [38]. They argued that, when
evaluating the color composition of an image, the visual
system discounts local subtle variations and focuses on a few
dominant colors.

In addition to an appropriate color representation, the
color composition of images must be compared in a way

that agrees with human perception. Mojsilovic et al. [37]
proposed the OCCD, which is implemented in CIELab space
and which is closely related to the EMD [49]. In the paper
that introduced EMD, Rubner et al. [49] also emphasized the
need for compact color representations, which is consistent
with the use of dominant colors.

In line with these findings, and in order to account for
the nonuniformity of the statistical characteristics of natural
textures, Chen et al. [7] introduced the idea of spatially
adaptive dominant colors in the context of color texture
segmentation and proposed the use of ACA [43] to estimate
them and OCCD [37] to compare them. Zujovic et al. [59,
60] then incorporated the spatially adaptive dominant colors
and theOCCD into a structural texture similaritymetric that,
as we discussed above, assumes that color composition and
texture structure can be estimated independently.

2. TEXTURE ANALYSIS AND SYNTHESIS
To analyze the effects of structure on the perceived color
composition of a texture image, we first estimate its color
composition in terms of dominant colors [7] and then
synthesize textures with the same color composition and
different structures.

2.1 Color Composition Feature Extraction
As we discussed in the introduction, we estimate the color
composition of a texture image by extracting the dominant
colors and the associated percentages, using ACA [43] to
segment the image into regions of slowly varying colors with
rapid changes at the boundaries. As we saw, this results in the
posterized images of Fig. 2(c).

For spatially homogeneous textures, a small number
of segment classes, typically KACA = 2 to 4, is sufficient to
capture the dominant structure and colors of the image.
Pappas et al. [44] found that, for natural images, the majority
of segments containing perceptually uniform textures can
be characterized by just the first two dominant colors for
effective texture classification. Similarly, He and Pappas [14,
15] proposed a segmentation algorithm that is based on the
fact that natural textures consist of intensity variations of
a single hue [41]. However, as we discuss in Section 3, for
our experiments we selected stimuli that have a variety of
patterns and colors, with KACA = 4.

The feature vector that specifies the color composition,
shown in Fig. 2(d), consists of the KACA averages, expressed
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in CIELab color coordinates
{
L∗k, a

∗

k, b
∗

k
}
and the associated

color percentages
{
pk
}
with k= 1, . . . ,KACA.

Among the extracted dominant colors, we define the
most illuminant color as the color with the highest value
in the luminance (L∗) channel and with percentage at least
20%. We also define the most distinct color as the color with
the largest average 1E distance from the other dominant
colors. The1E distance between two colors (L∗1, a

∗

1, b
∗

1) and
(L∗2, a

∗

2, b
∗

2) is determined as follows:

1ELab =
√
(1L∗)2+ (1a∗)2+ (1b∗)2, (1)

where 1L∗ = L∗1 − L∗2, 1a∗ = a∗1 − a∗2, and 1b∗ = b∗1 − b∗2.
The selection of the most illuminant andmost distinct colors
for the empirical studies we describe below was arbitrary.
Initially, we thought that it would make it easier to run our
studies. However, we have no evidence of that, and expect
that similar outcomes would be observed with any other
color choice.

2.2 Texture Generation
Our goal is to synthesize textures with a given color
composition but with structure different from that of the
posterized texture. We used two approaches for generating
textures, one with isotropic blobs and the other with blocks
of different geometries (squares, rectangles, lines) and scales.

2.2.1 Isotropic Blobs
To obtain textures that consist of blobs with colors and
percentages that correspond to the given color composition,
we rely onMRFs [4, 5, 23]. For more details, see appendix A.

For the first empirical study, we generated a number
of blobby textures by varying the percentage of the target
color, and adjusting the percentages of the other colors
accordingly. For each set of colors and each set of percentages,
we synthesized a new texture from scratch. Examples are
shown in Figure 3(a).

2.2.2 Geometric Blocks
As an alternative to isotropic blobs, we consider the problem
of synthesizing textures that consist of blocks with different
geometric shapes and different scales. In principle, this could
be done by adjusting the parameters of the MRF model;
however, this is computationally intensive, and it is difficult
to control the shape of the blocks. So, we adopt a more direct
approach that places blocks of different colors and a given
(rectangular) shape at different locations in the image; this is
amanifestation of the ‘‘dead leaves’’ technique [6, 27, 35], and
is designed to generate textures with a given scale and shape
and a given color composition.

Given a set of colors and associated percentages, it
is in general impossible to generate perfectly tiled images
consisting of rectangular blocks of a fixed shape and size.
Instead of perfectly tiled images, the idea is to place fixed
shape/size blocks of different (dominant) colors at random
positions in the image. This means, of course, that the blocks
will overlap. To achieve the desired color percentages, we

Figure 3. Synthesized images with (a) isotropic blobs with varying target
color percentage, (b) squares of varying scale, and (c) rectangles with
varying height/width ratio.

select the color of each block we place with probability equal
to the percentage of that color. However, due to the random
block overlap, the resulting percentages of each color will
not be the same as the target percentages. We thus need an
iterative procedure that will closely approximate the desired
color percentages. The details can be found in appendixA. By
selecting square blocks of a different fixed size for each image,
we can get textures of different scales, as shown in Fig. 3(b).
By controlling the height/width (H/W) ratio of the blocks,
we can generate more or less elongated textures, as shown in
Fig. 3(c).

When the percentage changes, the number of blocks
of each color changes but, in principle, the shape and scale
remain the same. However, due to the block overlap and
randomplacement, this approach provides only approximate
control of the scale and shape of the texture patterns.
Quantitative analysis and illustrations of such effects can be
found in Figure 11 of Study 2 and Figure 14 of Study 3.

An alternative approach to achieve a given color
composition would be to keep the probability of placement
fixed and to vary the size of the blocks based on the
percentages. However, this approach does not provide good
control of the scale of the resulting textures.

3. EMPIRICAL STUDIES
In this section, we describe three empirical studies to
determine the effects of texture structure on the perception
of color composition. In the first study, we compare the
posterized texture with isotropic blob synthetic textures that
have varying target color percentages, in order to determine
whether there is a difference in the perceived target color
percentages of the two texture structures. In the other two
studies, we investigate the effect of scale and shape on the
perception of the percentage of the target color. All three
studies were designed as 2AFC tests.
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3.1 Test Setup
3.1.1 Participants
Fifteen volunteers, six female and nine male, with ages
ranging from 20 to 50, participated in each of the three
studies. All participants had normal or corrected-to-normal
vision and were tested for color blindness and red–green
color vision deficiency. Before the test, all participants were
asked to read and sign a consent form.

3.1.2 Apparatus
The tests were conducted using a calibrated LCD screen
with 1920× 1080 resolution and linear gamma. The viewing
distance was approximately 60 cm so that a 256 pixel wide
image subtended an angle of 9.39 degrees.

3.1.3 Texture Stimuli
For our empirical studies, we selected seven original full color
textures, shown in Figure 4(a). The textures were obtained
from the Corbis database,1 correspond to real-world images,
and were selected to have a variety of interesting patterns
and colors. Since most natural textures have only a couple
of dominant colors [15, 44] that typically consist of intensity
variations (caused by changes in illumination) of a single hue
(which corresponds to a single material) [41], we selected
textures of flowers, fruits, corals, and fabrics that have four
distinct dominant colors, as well as a variety of patterns. The
posterized textures, obtained by ACA segmentation of the
original textures, are shown in Fig. 4(b). Fig. 4(c) shows the
color composition of the posterized textures of Fig. 4(b) with
the target color underlined. (Note that Texture 5 contains a
small amount of a fourth color, gray, that is visible at the
upper left and right corners.) The length of each color bar
represents the percentage. Figure 5(d) shows the grayscale
component (loosely, luminance) of the posterized textures.
Observe that the dominant colors of each texture differ in
luminance, with two exceptions: Two of the colors in Texture
Sets 5 (cyan and magenta) and 6 (olive and blue) have
the same luminance, and only one of these colors (cyan in
Texture Set 5) is a target color. Thus, as we discussed in
the introduction, the colors of the blobs in the synthesized
textures differ in both luminance and chrominance, and
hence differences in the contrast sensitivity of luminance and
chrominance edges [24] cannot account for the results of our
experiments.

The texture stimuli for our empirical studies contain
nine sets of texture images that include posterized and syn-
thetic images, cropped to 128× 128 pixels and upsampled to
256× 256 by pixel repetition. Note that Texture Sets 8 and
9 are the same as Texture Sets 2 and 7, respectively, but have
different target colors.

3.1.4 Texture Stimuli for Study 1: Posterized versus Varying
Percentage Isotropic Blobs

Each set includes one posterized texture and seven synthetic
textures that share the same dominant colors with different

1 http://www.corbis.com

percentages. Fig. 4(c) shows the color composition of
the posterized textures of Fig. 4(b) with the target color
underlined. The length of each color bar represents the
percentage. Fig. 4(e) shows seven isotropic textures for
each set, each of which was synthesized with target color
percentage that differs by−9%,−6%,−3%, 0%,+3%,+6%,
and +9% actual percentage points from the corresponding
posterized texture. The percentages of the remaining colors
were adjusted proportionately. Note that the posterized
images of Texture Sets 8 and 9 are the same as those of Texture
Sets 2 and 7, respectively, but the target colors are different,
and so are the realizations of the synthetic textures. The target
colors in Texture Sets 1–7 are the most illuminant colors,
while the target colors in Texture Sets 8 and 9 are the most
distinct colors.

With 8 textures (1 posterized and 7 synthetic), there are
28 possible image pairs in each set. Based on a preliminary
test, when the actual difference in the amount of target color
exceeds 9%, the difference is obvious and the participants are
able to consistently select the image with the higher color
amount. We thus only selected pairs with 9% or less color
difference. This results in 15 synthetic–synthetic (S–S) pairs
and 7 synthetic–posterized (S–P) pairs for each texture set.
To balance the occurrence of S–S and S–P pairs, we repeated
each S–P pair twice.

3.1.5 Texture Stimuli for Study 2: Posterized versus Varying
Scale Square Blocks

The texture stimuli contain nine sets of color texture
images. Each set includes one posterized texture, the same
as that used in Study 1, and four synthetic textures of
varying scale that share the same color composition with the
posterized texture. Fig. 5(a) shows the posterized textures,
and Fig. 5(b) shows their color composition with the target
color underlined. The synthetic textures were generated with
squares of sizes 8 × 8, 16 × 16, 24 × 24, and 32 × 32, to
obtain different scales, as shown in Fig. 5(c). The actual color
composition of each synthetic image is the same as that of the
corresponding posterized texture image.

However, to add more variability to the test patterns,
we generated additional textures for each of the four scales
of each color set with an additional 3% of the target color,
while the other colors were adjusted proportionately. These
textures are shown in Fig. 5(d).

Thus, in each set we have one posterized texture and a
total of eight synthetic textures, two for each scale. In addition
to gathering more data, we found that the added variability
was necessary in order to stimulate the participants’ interest,
offering some relatively easy choices along with the more
challenging ones, for which the participant might select
one image at random. This keeps the participant alert and
discourages reverting to random selection for all image pairs.

Note that in Fig. 5(c), even though the target colors
are different, the synthetic images for Texture Sets 8 and 9
are the same as those of Texture Sets 2 and 7, respectively,
because the color compositions are the same. However, in
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Figure 4. Texture stimuli for Study 1.
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Figure 5. Texture stimuli for Study 2.

Fig. 5(d), the color compositions are different and so are the
realizations.

With 9 textures in each set (one posterized and 8
synthetic), there are 28 possible S–S and 8 S–P pairs for
presentation to each participant. To balance the occurrence
of S–S and S–P pairs, we repeated each S–P pair three times.

3.1.6 Texture Stimuli for Study 3: Varying Shape of Rectangu-
lar Blocks

The texture stimuli contain nine sets of color texture images.
Each set includes four synthetic textures of varying shape
that share the same dominant colors and percentages with
the posterized texture of the corresponding set in Studies 1
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Figure 6. Examples of texture stimuli for Study 3.

and 2. The posterized textureswere not included in this study.
The synthetic textures were generated with rectangles with
H/W ratios 1 : 1, 2 : 1, 4 : 1, and 8 : 1, that is, with square
and rectangular blocks with different elongation factors. As
we discussed, all of the rectangular blocks have the same area
in order to maintain a constant scale. Note that, in contrast

to the other two studies, the size of the rectangular block for
each set was based on the estimated scale of the target color
in the posterized texture; the scale estimation algorithm is
presented in Appexdix B. Figure 6(a) shows the posterized
textures, and Fig. 6(b) shows their color compositionwith the
target color underlined. Fig. 6(c) shows the synthetic textures
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Figure 7. Graphical user interface.

with the color composition shown in Fig. 6(b). As in the
varying scale study, for each H/W ratio, we also generated
textures with an additional 3% of the target color, shown in
Fig. 6(d), for more variability. Note that, since the scale of
each synthetic image is based on the estimated scale of the
target color in the posterized texture, the scales of Texture
Sets 2 and 8 are different; the same is true for Texture Sets 7
and 9.

With 8 textures in each set (all synthetic), there are 28
possible pairs for presentation to each participant.

3.1.7 Procedure
The empirical studies were designed as 2AFC tests. The
graphical user interface is shown in Figure 7. A sequence
of image pairs was presented to the participants side by
side. Each image pair contained textures that had the same
dominant colors (corresponding to the same posterized
texture) but differed in texture structure and/or target color
percentage. The positions of the images in a pair were
randomized in each trial to eliminate response bias. The
participants were asked to select the image that contained
a higher percentage of the target color using keyboard
shortcuts.

The three studies (isotropic blobs, square textures of
different scales, and textures with different rectangle shapes)
were conducted separately. To prevent any participant biases
based on parameter values (e.g., blob size or shape), image
pairs that correspond to the nine different posterized images
were mixed up and presented in random order. There were
no time limits in any of the tests. However, the participants
were encouraged to proceed at a comfortably fast pace.

4. ANALYSIS OF THE RESULTS
4.1 Analysis of Study 1
The first study was carried out with the posterized textures
and the synthetic isotropic blob textures. As we discussed,
the goal of this studywas to determinewhether the difference
in structure between the posterized texture and the synthetic
isotropic blob textures affects the perception of the target
color amount. As we will see, this study also demonstrates
that the perceived differences in the amount of target color
are consistent with the actual color percentages.

We employed Thurstonian scaling [54] to convert the
2AFC results to preference scores for each texture set.
The model assumes that the relative magnitudes of the
preferences for the stimuli can be determined by the winning
frequencies that one stimulus is selected over another in a
paired comparison task. We accumulated the comparative
choices across participants for each pair and computed a
preference matrix for each texture set with the winning
frequencies between 0 and 1. The values in each preference
matrix were omitted and treated as missing values when
the winning frequency was too small (< 0.02) or too large
(> 0.98) to give stable estimates [11]. The diagonal values
were set to 0.5. We then applied the Thurstone Case Vmodel
to convert pairwise preferences to continuous perception
scores. The scores were further normalized to Z-scores to
facilitate evaluation across the texture sets. The Z-scores
are obtained by subtracting the mean and dividing by
the standard deviation. Larger Z-score indicates stronger
perception of the target color amount.

Figure 8 displays the Z-scores of each texture set as a
function of the physical target color percentage difference.
The dotted line in each plot represents the perception of the
posterized image among the synthetic images. The overall
increasing tendencies in Fig. 8 show that the participants are
capable of perceiving the changes in the amount of target
color. The fitted linear regression between the Z-scores and
the physical target color percentage difference in each texture
set suggests that the perceived color amount is linearly related
to the physical percentage difference in target color. We
counted the correct responses of the 2AFC results between
S–S pairs. The probabilities of correct response for 3%, 6%,
and 9% target color differences are 0.82, 0.9, and 0.98, with
36, 45, and 36 samples, respectively, which indicates that the
just noticeable difference of color amount is below the 3%
difference in color.

By comparing the Z-scores of the posterized and the
synthetic images, we notice that the perceived target color
amount of most texture sets is between the perceived target
color amount of the synthetic images with±3% actual target
color amount difference. The only exceptions are Texture Sets
1 and 5. For Texture Set 1, the posterized texture is perceived
as having a much higher percentage of the target color than
the synthetic image with 0% target color difference, while the
opposite is true for Texture Set 5. Table I lists the perceived
target color difference (1Z) of each texture set.

We now examine the factors that may have caused the
perceived color amount difference between the posterized
and the synthetic image (0%). Three possible factors are
explored: (a) the scale difference of the target color blobs in
the posterized and synthetic images (1S); (b) the lightness
difference between the posterized and the synthetic images
(1L); (c) the color distance between the target color and the
most similar adjacent color (1E).

One obvious difference is the color scale. For Texture Set
1 of Fig. 4, the target color blobs of the posterized texture
appear to be larger than those of the synthetic textures, while
the opposite is true for Texture Set 5. To quantitatively check
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Figure 8. Analysis of the results of Study 1. Ranking the preference scores to generate the perception of a larger amount of color for synthetic textures
with varying actual target color amount. The x-axis represents the target color amount difference (synthetic–posterized). The y-axis represents the Z -score
for each image using Thurstonian scaling. The dotted lines correspond to the posterized texture images in each texture set. The solid blue lines are linear
regressions fitted to the synthetic images of each texture set. The R2 values of the fitted regressions are shown in the upper left corner.

Table I. Perceived color amount difference between the posterized and the synthetic (0%) textures and the corresponding difference in scale, color, and lightness.

Posterized–Synthetic (0%) Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Z -score (1Z ) 0.879 −0.509 −0.208 0.337 −1.226 −0.441 0.183 0.089 −0.057
Scale (1S ) 4.98 −2.83 −2.36 −1.41 −13.3 −4.65 −2.01 2.78 2.01
Adjacent color (1E ) 17.0 27.4 55.6 64.2 60.5 75.9 30.8 78.5 58.2
Lightness (1L) 0.061 0.159 0.905 0.737 0.039 −0.250 0.186 0.151 0.313
Fitted regression 1Z = c1 ·1S + c2 ·1L + c3 ·1E + interp

Coefficients c1 = 0.093 c2 = 0.16 c3 =−0.004 interp= 0.26
p -value: 0.009 p -value: 0.64 p -value: 0.45 p -value: 0.43

Standardized 0.83 0.10 0.16
Fitted regression has R 2 = 0.81, p -value= 0.029

the above observations, we calculated the average linear scale
of the target color blobs in each image as the geometric mean
of the average horizontal and vertical lengths of the blobs,
as described in appendix B. Table I lists the scale difference
(1S) between the texture synthesized with 0% difference in
the target color and the posterized texture. To check how the
scale difference relates to the perceived target color amount
difference, we fitted a linear regression between1Z and1S
(1Z = c ·1S+ interp). The estimated coefficients (c = 0.1,
p= 0.002, interp= 0.08)withR2

= 0.778 show that the scale

difference has high positive correlation with the perceptual
difference.

Another factor that may have influenced the outcome
of our experiments is the average lightness of the image.
Note that if the target color is lighter or darker than the
other colors, then by modifying the amount of target color
we are also modifying the average lightness of the image.
Thus, one could hypothesize that the participants may have
ordered the textures according to overall lightness rather
than according to the amount of perceived target color,
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Figure 9. Average lightness of different synthetic images.

as instructed. Figure 9 plots the average lightness of each
synthetic image for each texture set. Note that the most
dramatic changes occur in Texture Sets 3, 4, 6, 7 (increasing
slope), and 9 (decreasing slope). However, the placement
of the posterized texture does not seem to be related to
the change in average lightness. The lightness difference 1L
between the posterized and the synthetic (0%) images for
each texture set is listed in Table I. Similar to the analysis
of scale difference, we fitted a linear regression between 1Z
and1L (1Z = c ·1L+ interp) to check the relation between
the perception and lightness. The estimated coefficients
(c = 0.36, p = 0.57, interp = −0.198) with R2

= 0.047
show that the lightness does not play a significant role in
influencing the perceived difference in color amount.

Apart from the color scale and lightness, the similarity
of spatially adjacent colors could also affect the perceived
target color amount, especially for Texture Set 1. In Texture
Set 1, the most similar colors (two shades of strawberries)
are adjacent in the posterized texture but randomly placed
in the synthetic texture. 1E in Table I lists the distance
between the target color and the most similar adjacent color
for each texture set. Note that the most similar adjacent color
(dark red) occurs for Texture Set 1; for all the other sets, the
difference between adjacent colors is quite large, and hence
does not seem to have any effect on the perceived target color
amount.

To investigate the relative contributions of each factor,
we fitted a multiple regression with the three factors on
the perceived color amount difference 1Z (1Z = c1 ·1S+
c2 ·1L+ c3 ·1E + interp). The estimated coefficients with
the corresponding p-values and standardized coefficients
are listed in Table I. Note that 1S and 1L contribute
positively to 1Z , and 1E negatively, but the p-values
and the standardized coefficients show that only the 1S
contributions to 1Z are statistically significant, and that
the contributions of the other independent variables are
negligible.

In the analysis of Study 2 below, where we vary the scale
of the blobs for a fixed color composition (and hence fixed
lightness), we further investigate the relationship between the
target color scale and the perception of target color amount.

4.2 Analysis of Study 2
The goal of this study was to consider the direct effects of
scale on the perceived amount of the target color. This study
was carried out with the posterized textures and textures
synthesized with squares of different sizes. We compared the
synthetic textures to each other, as well as to the posterized
texture. As shown in Fig. 5, each color set has four different
scales (generating block sizes of 8× 8, 16× 16, 24× 24, and
32× 32) with the same color composition, and the same four
scales with +3% of the target color.

As in Study 1, we employed Thurstonian scaling [54] to
convert the 2AFC results to preference scores for each texture
set. Using the nine sets as replication, a repeated-measures
analysis of variance (ANOVA) with two within-subject
factors (block scale level and percentage) verified that the
perceived target color amount is affected by the scale (block
size), F(3, 24)= 123.4, p< 0.0001, and by the actual color
amount change, F(1, 24) = 109.3, p < 0.0001. There is no
interaction between the block size and actual color amount,
F(3, 24)= 0.578, p= 0.635.

Figure 10 shows the Z-scores of each texture set. A
higher score indicates a higher amount of perceived target
color. It is no surprise that the values for the +3% images are
higher than those for the 0% images at each scale since the
perceived color amount is consistent with the actual color
amount, as shown in Study 1. In addition, the increasing
scores for each of the texture sets in Fig. 10 demonstrate
that pattern agglomeration (increasing scale) results in the
perception of increasing target color amount. The score of
the posterized texture is shown in dotted black line for each
texture set. It is clear that the placement of the posterized
images varies considerably across the texture sets.

Figure 11 presents the average linear scale of the
target color blobs of the posterized and synthetic textures.
A two-way ANOVA was employed to test whether, in
addition to the generating block size, the +3% color
difference affected the scale values. The analysis shows
that apart from the statistically significant effect of block
size (F(3, 24) = 73.9, p < 0.0001), the average linear scale
is also affected by the actual color percentage difference
(F(1, 24)= 5.84, p= 0.02). There is no interaction between
the block size and actual color amount, F(3, 24) = 0.29,
p= 0.83.

Note that for Texture Sets 1, 4, 8, and 9, the linear
scale of the posterized texture is relatively higher compared
to that of the synthetic textures, and the scale of Texture
Set 5 relatively lower, which is consistent with the results
in Fig. 10. Note, however, that the relative location of the
posterized (dotted black line) compared to the synthetic
textures in Fig. 10 is generally higher than the corresponding
location of the posterized relative to the synthetic textures in
Fig. 11. Here we should also point out that even though the
images synthesized with a given generating square size are
expected to have the same scale, and hence the 0% and+3%
bar heights are expected to coincide, the actual estimated
scales differ due to the varying percentages (as we noted
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Figure 10. Analysis of the results of Study 2. Ranking the preference scores to generate the perception of a larger amount of color for synthetic textures
with varying pattern scales—with the same color composition as the posterized texture (0%) and +3% target color—and posterized texture (dotted line).

Figure 11. Analysis of the results of Study 2. Estimated average scale of target color in each image—with the same color composition as the posterized
texture (0%) and +3% target color–and posterized (dotted line).

above, higher percentages result in higher probability of
agglomeration) and the randomness in the block placements.

To summarize the relationship between color scale and
color amount perception, Figure 12 shows a combined view
of Figs. 10 and 11 across all texture sets (posterized textures
excluded). The position of each dot is obtained by averaging
the linear scales (x-axis) and the Z-scores (y-axis) of all
synthetic textures with the same color block scale (8 × 8,
16× 16, 24× 24, 32× 32) and the same actual color amount
difference (0%,+3%). We used linear regression (Z = b ·
Scale+ δ · ColorAmountDifference+ interp) to investigate
the influence of the average linear scale on the perceived color
amount (Z-score) with the actual color amount difference
as a dummy variable. The estimated coefficients (slope:
b= 0.102, p< 0.001; δ = 0.709, p< 0.001; interp =−2.48,
p < 0.001) demonstrate that there exists a linear positive
relationship between the target linear scale and the perceived
color amount.

4.3 Analysis of Study 3
The goal of this study was to investigate the effect of shape
on the perception of the amount of the target color. In
this study, we only compared synthesized textures (with
rectangles of differentH/Wratios) to each other. The analysis
is similar to that of the second study. Using the nine
textures as replication, a repeated-measures ANOVA with
two within-subject factors (elongation level and percentage)
verified that the perceived target color amount is affected
by the H/W ratio, F(3, 24)= 16.46, p< 0.0001, and by the
actual color amount change, F(1, 24)= 190.8, p< 0.0001.
The actual color amount and elongation degree in structure
are independent with no interaction, F(3, 24)= 0.654, p=
0.589.

Figure 12. Effects of average linear scale on the Z -scores of the perceived
color amount. Error bars are the standard error of the mean score and
average linear scale across all texture sets. The dashed lines are linear
regression lines fitted to all the data points with the actual color amount
as a dummy variable.

Figure 13 shows the estimates of the perceived scores
within each color set. The labels of the x-axis are the H/W
ratios of color blocks used to synthesize each texture. The
+3% synthesized textures are almost always higher than the
0% synthesized textures at eachH/Wratio due to the increase
in the actual target color amount. Apart from Texture Set 6,
the general trend is that the perceived amount of target color
decreases as the geometric shape becomes more elongated
(H/W ratio increases) for both the 0% and the+3% textures.
One possible explanation of the weak relation between shape
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Figure 13. Analysis of the results of Study 3. Ranking the preference scores to generate the perception of a larger amount of color for synthetic textures
with varying pattern shapes—with the same color composition as the posterized texture (0%) and +3% target color.

Figure 14. Analysis of the results of Study 3. Estimated average elongation of target color in each image—with the same color composition as the
posterized texture (0%) and +3% target color.

and color perception in Texture Set 6 is the influence of
pattern scale, which is considerably smaller than in the other
sets. While the H/W ratio was changed, the scales of all
synthesized textures in this study were designed with scales
similar to the posterized texture. When the pattern scale is
small, the shape variations are not as noticeable as they are
in the larger pattern scales.

Figure 14 shows the bar plots of the average elongation
degree of each texture composed of color blocks with
the specified H/W ratio. The average elongation degree is
defined as max(Lv ,Lh)

min(Lv ,Lh) , where Lv and Lh are the average vertical
and horizontal lengths of the target color blobs based on
the algorithm in Appendix A. As expected, the elongation
degree increases as the color block H/W ratio increases.
Note, however, that the resulting elongation degree is not
equal to the H/W ratio, due to block overlap and random
block placement. As in the analysis of the scale study, a
two-way ANOVA was employed to test whether, in addition
to the generating block H/W ratio, the+3% color difference
affected the elongation degree values. The analysis shows that
apart from the statistically significant effect of color block
H/W ratio (F(3, 24) = 231, p < 0.0001), the influence of
actual color percentage difference on the average elongation
degree is not statistically significant (F = 0.97, p = 0.33).
There is no interaction between the color block H/W ratio
and the actual color amount, F(3, 24)= 0.5, p= 0.68.

To summarize the relationship between color elon-
gation and color amount perception, Figure 15 shows
a combined view of Figs. 13 and 14 across all texture
sets. The position of each dot represents the average
elongation degree (x-axis) and the Z-score (y-axis) of

all synthetic textures with the same color block ratio
(1 : 1, 2 : 1, 4 : 1, 8 : 1) and the same actual color
amount difference (0%,+3%). We used linear regression
(Z = b · Elongation+ δ · ColorAmountDifference+ interp)
to investigate the influence of shape (average elongation
degree) on the perceived color amount (Z-score) with
the actual color amount difference as a dummy variable.
The estimated coefficients (slope: b = −0.38, p < 0.001;
δ = 1.366, p< 0.001; interp= 0.217, p= 0.08) demonstrate
that there exists a linear negative relationship between the
elongation degree and the perceived color amount.

5. MODELING THE RESULTS
An important question to be addressed is whether there
is a model that can explain and predict the results of our
empirical studies. While it would be desirable to come up
with a model of the underlying visual mechanisms that
explain the observed effects, in this section we propose a
model that estimates the contribution of each pixel to the
perceived amount of the target color, as determined by our
empirical studies. We hope that this will stimulate interest in
exploring the underlying visual mechanisms.

Our hypothesis is that there is an edge effect, whereby
the pixels near the blob boundaries contribute less to the
perceived target color amount than pixels at the center of
the blobs. That is, the visibility of a pixel decreases as the
pixel approaches the closest boundary. We will assume that
this effect is limited to a distance of a few pixels from the
boundary.
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Figure 15. Effects of average elongation degree on the Z -scores of
perceived color amount. Error bars are the standard error of the mean
score and average elongation degree across all texture sets. The dashed
lines are linear regression lines fitted to all the data points with the actual
color amount as a dummy variable.

To estimate the distance of each pixel from the closest
boundary, we rely on mathematical morphology [33]. To
obtain the pixels that are adjacent to a color boundary, we
apply a one-pixel erosion operator to the map of the target
color. The eroded pixels comprise the first layer of pixels
that are at a distance of one pixel from a boundary. We then
apply a one-pixel erosion to the remaining pixels to obtain the
second layer of pixels that are at a distance of two pixels from
a boundary. We can continue this process to obtain multiple
layers at different distances from the boundaries. Figure 17
shows an example of the iterative erosion method; Fig. 17(a)
shows a color segment from one of the synthesized images,
Fig. 17(b) shows the decomposition into layers, and Fig. 17(c)
shows the number of pixels in each layer.

Let P(t) represent the perceived proportion of a texture
image that is taken by a given target color t . Assume there
are K boundary layers in total, the first being the outermost
layer of each color segment and the K th being the innermost
layer of the largest segment. Then P(t) is given by the
layer-weighted area of the target color

P(t)=
1
Nt

K∑
k=1

wkNt,k, (2)

where Nt,k is the number of pixels in a layer that is at a
distance of k pixels from the closest boundary, Nt is the total
number of pixels of the target color t , and wk is a weight
associated with the visibility of the kth layer.

For the layer weights, we tried a hyperbolic tangent
function

wk = tanh(a · k+b)=
e(a·k+b)− e−(a·k+b)

e(a·k+b)+ e−(a·k+b)
, a+b≥ 0, a> 0,

(3)
where k is the layer index, wk takes values in the interval
[0, 1], and a and b are constants controlling the saturation

speed and shift of wk, respectively. With large a, the weights
saturate quickly to 1. Using a= 0.5, b=−0.25, we obtained
weights 0.24, 0.63, and 0.85 for the outermost layers, with
the weights for the remaining inner layers taking values
close to 1. In a limiting case, w1 = 0 and wk = 1 for k > 1
(a= 5, b=−5). The reason for these choices is that visibility
is reduced near the boundaries and increases rapidly as
we move away from the boundaries. Of course, all this
depends on the viewing distance and display resolution.
As we discussed in the introduction, the viewing distance
and display resolution in our experiments are such that
there is very little filtering across the boundaries. Finally, we
also tried linearly increasing weights as well as the default
constant weights wk = 1 for all k (no edge effect). Three
different weighting strategies are illustrated in Figure 16.

Tables II and III show the Pearson correlation coefficient
between the model estimates and the perceived target color
amount (Z-scores), for each texture set, for the scale and
shape studies, respectively. We also calculated the average
correlation coefficient across all texture sets as the inverse
transform of the average of Fisher’s Z-transform of each
texture set [51]. The tables compare three parameter settings
of the hyperbolic weighting strategy with linearly increasing
weights and the default constant weight strategy (wk = 1 for
all k).

Table II shows that, for the scale study, all the
weighting strategies provide acceptable performance, with
the linear weights outperforming the other strategies, and
demonstrates the inadequacy of the constant weights. On the
other hand, for the shape study, Table III shows that even
though the linear weights have higher overall correlation
than the hyperbolic weighting schemes, they have relatively
low correlation on Texture Set 6 (0.666). Overall, the quick
saturation weighting strategy using a hyperbolic weighting
scheme with a = 0.5 and b = −0.25 provides a relatively
stable strong positive correlation with the perceived color
amount, for the best overall performance. However, the
performance of the limiting case with w1 = 0 and wk = 1 for
k> 1 is almost as good.

Using the hyperbolic weighting scheme with a =
0.5, b=−0.25, we can estimate the perceived color amount
for each image in the two studies. The results are plotted in
Figure 18 as a function of the measured Z-scores. The plots
provide another indication that the model is consistent with
the results of our empirical studies.

As we discussed above, we could not find any visual
mechanisms that explain the observed edge effect. The
closest is a study by Eskew and Boynton [13], who consider
compact, spatially localized stimuli with varying width
and junction length; however, the conclusions are about
variations in contrast sensitivity, which is not likely to have
an effect on stimuli with contrast well above threshold.

6. DISCUSSION AND CONCLUSIONS
We investigated the influence of texture structure on
the perception of color composition through a series of
empirical studies. We relied on color segmentation (adaptive
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Table II. Scale study: Pearson correlation between layer-weighted area of target color and perceived target color amount.

Weight Strategy Pearson Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Average

a = 0.5, b =−0.25 Correlation 0.896 0.911 0.982 0.938 0.919 0.958 0.950 0.932 0.888 0.938
p -value 0.0026 0.0017 0.0001 0.0006 0.0012 0.0002 0.0003 0.0008 0.0032 –

a = 0.5, b = 0 Correlation 0.838 0.881 0.934 0.938 0.931 0.954 0.938 0.850 0.779 0.907
p -value 0.0093 0.0039 0.0007 0.0006 0.0008 0.0002 0.0006 0.0075 0.0229 –

w1 = 0, wk = 1 for k > 1 Correlation 0.882 0.893 0.978 0.933 0.918 0.957 0.942 0.935 0.876 0.932
p -value 0.0037 0.0029 0.0000 0.0007 0.0013 0.0002 0.0005 0.0007 0.0044 –

Linear weights Correlation 0.944 0.945 0.977 0.902 0.923 0.915 0.963 0.968 0.983 0.954
p -value 0.0004 0.0004 0.0000 0.0022 0.0011 0.0015 0.0001 0.0001 0.0000 –

wk = 1 for all k Correlation 0.401 0.541 0.580 0.633 0.448 0.501 0.404 0.516 0.328 0.489
p -value 0.3243 0.1663 0.1325 0.0918 0.2661 0.2060 0.3215 0.1905 0.4284 –

Table III. Shape study: Pearson correlation between layer-weighted area of target color and perceived target color amount.

Weight Strategy Pearson Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Average

a = 0.5, b =−0.25 Correlation 0.852 0.750 0.856 0.887 0.881 0.749 0.942 0.750 0.720 0.837
p -value 0.0072 0.0321 0.0066 0.0033 0.0038 0.0361 0.0005 0.0321 0.0440 –

a = 0.5, b = 0 Correlation 0.812 0.679 0.824 0.860 0.865 0.845 0.934 0.742 0.713 0.823
p -value 0.0143 0.0641 0.0120 0.0062 0.0055 0.0083 0.0007 0.0349 0.0473 –

w1 = 0, wk = 1 for k > 1 Correlation 0.841 0.730 0.861 0.882 0.866 0.720 0.942 0.742 0.725 0.830
p -value 0.0089 0.0398 0.0060 0.0038 0.0055 0.0438 0.0005 0.0350 0.0417 –

Linear weights Correlation 0.940 0.864 0.892 0.917 0.906 0.666 0.894 0.815 0.749 0.868
p -value 0.0005 0.0056 0.0029 0.0014 0.0019 0.0717 0.0027 0.0136 0.0325 –

wk = 1 for all k Correlation 0.700 0.486 0.742 0.784 0.821 0.958 0.875 0.713 0.670 0.786
p -value 0.0530 0.2219 0.0350 0.0213 0.0125 0.0002 0.0044 0.0472 0.0693 –

Figure 16. Weights for k th layer using different strategies.

clustering) to estimate the color composition of a given
texture image, and synthesized new textures with the same
color composition but different structures, consisting of
isotropic blobs and geometric blocks of different scales and
shapes.

The first observation is thatwhen scale and shape are not
changing significantly, there is a linear relation between the
actual color amount and the values derived from the 2AFC
experiments. This suggests that the participants are able
to consistently assess differences in color composition for
textures of similar shape and scale. Second, the results of our
empirical studies indicate that pattern scale and shape have a

strong impact on the perception of the target color amount.
In particular, when images have the same physical amount
of a target color, there exists a positive linear relationship
between the Z-scores of the perceived color amount and the
average linear scale of the target color blobs, and a negative
linear relationship between the Z-scores of the perceived
color amount and the average elongation degree of the target
color blobs. However, we found one indication that the
elongation effect might be weakened as the texture scale
decreases (Texture Set 6 in Study 3). In addition, we found
that there is no interaction between the actual color amount
and the scale or the shape.

As we discussed in the introduction and the design
of the empirical studies, we did not try to separate the
effects of luminance and chrominance.With only a couple of
exceptions, the colors of the blobs differ in both luminance
and chrominance so that differences in contrast sensitivity
of luminance and chrominance edges cannot account for
the observed results. Selecting isochrominant stimuli would
have led to very similar results, but would have made the
stimuli less realistic and less appealing to the participants. In
addition to visual appeal, selecting isoluminant stimuli could
have induced averaging across the blob boundaries, whichwe
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(c)(b)(a)

Figure 17. Iterative 1-pixel erosion of a target color segment. (a) Synthetic image. (b) Decomposition of target color segment into layers. (c) Distribution
of layer pixel counts.

Figure 18. Model estimates versus measured Z -scores of perceived color amount for textures in (a) scale study and (b) shape study. The root mean squared
error of the estimates for the scale study is 0.38 and for the shape study is 0.45. The dashed lines are fitted regression lines with slope 1 and intercept 0.

wanted to avoid. Our analysis showed that lightness did not
play a significant role in influencing the perceived difference
in color amount, which post hoc justifies our selections.

Based on our conclusions, the perceived amount of
target color depends on the physical color amount, the scale,
and the elongation degree. In Figs. 12 and 15, we showed how
the perceived target color amount depends on estimates of
scale and elongation, respectively. However, we also found
that a relatively simple model that accounts for decreased
visibility of the pixels near color boundaries is consistent with
the results of our empirical studies.

A somewhat surprising finding is that the increase in the
perceived color amount with increasing scale and decreasing
elongation is true for two different target colors, the most
illuminant and the most distinct color. If the same were true
for the other two colors (four in total), the apparent paradox
is that the percentages would add up to more than 100%.
Alternatively, if the perceived color amount of each color
decreases with decreasing scale and increasing elongation,
and this were true for all colors, then the percentages

would add up to less than 100%, that is, the participants
underestimate the amount of each color. We believe that the
latter is the case and that the participants treat the rest of
the colors as clutter, and apparently, the pixels with decreased
visibility near the borders are included in the clutter.

The above finding is a consequence of the fact that we
asked the participants to focus on one color. Our empirical
studies are essentially equivalent to asking the participants to
estimate the percentage of one color, effectively treating all
other colors as clutter. If insteadwehad asked the participants
to simultaneously estimate the percentage of each color, we
expect that they would have produced numbers that add up
to 100%. The testing of this hypothesis is beyond the scope of
this article.

As we discussed in the introduction, the results of our
empirical studies are consistent with Julesz’s texton the-
ory [20], whereby the size and shape of the textons affect the
texture perception.We also found some interesting analogies
with well-studied (but not directly related) phenomena, such
as texturemetamers [8]. Apart from the pixel visibility model
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we proposed in this article, we could not find any other
mechanisms that can explain the results of our studies,
which have been motivated from engineering applications
and have relied on real-world images that are more complex
than typical stimuli used in psychophysical studies. However,
we hope that our work raises new challenges for vision
research, including the need for a more basic understanding
of dominant colors of textures and general images.

Our results have definite implications for texture
similarity metrics. If we assume that scale and elongation
affect all the dominant colors, anymetric adjustments should
depend on estimates of the relative scale and elongation
degree of each color of the images being compared. Better
yet, the metric adjustments should depend on the model
we proposed. As we discussed, according to the results of
our empirical studies and the model estimates, the perceived
color amounts may add up to less than the total texture
area. As the scale of the images we compare decreases
and the elongation increases, the perceived amount of the
target color, and presumably the other colors, decreases.
One could then argue that color composition differences
should be given less weight than structure differences in the
overall evaluation of texture similarity. The specifics of such
adjustments will be the topic of future research.

APPENDIX A. TEXTURE SYNTHESIS ALGORITHMS
A.1 Isotropic Blobs
The generation of isotropic blobby patterns relies on
Markov/Gibbs random fields (MRF/GRF) [4, 5, 23]. We
generate sample images with KACA = 4 classes based on the
MRF model described in [43] and [59], which assumes that
the only nonzero Gibbs potentials are those that correspond
to the one- and two-point cliques. According to this model,
neighboring pixels are more likely to belong to the same
class than to different classes. The strengths of the two-point
clique potentials control the size and shape of the blobs, while
the strengths of the one-point clique potentials control the
percentage of labels in each class. An iterative procedure is
necessary to obtain an MRF image with a given percentage
of labels in each class. Finally, we ‘‘paint’’ the resulting sample
MRF image with the dominant colors as shown in Fig. 2(e).

For the first empirical study, we generated textures by
using the same value for all the two-point clique potentials in
order to generate isotropic blobs, which represent the most
generic structure thatmaintains the given color composition.

A.2 Geometric Blocks
To generate textures consisting of blocks of different
geometries and scales, we propose an iterative algorithm that
utilizes randomly placed overlapping fixed sized blocks with
the dominant colors. This is a manifestation of the ‘‘dead
leaves’’ technique [6, 27, 35].

The iterative block placement procedure is described
in Algorithm 1. The upper left corner of each color
block is placed at a random position in the image with
probabilities given by the desired color percentages. In order
to allow random placement of blocks anywhere in the image,

Figure A1. Example of generating geometric blocks. The background
canvas is shown in black.

including near the texture borders, we generate a canvas of
larger size than the posterized texture image and then crop
it back to the right size, as shown in Figure A1. The width of
the left and upper strip of the larger canvas equals the size of
the color blocks. By including blocks with upper left corners
in the strip regions, we enable partial block overlap in the
upper and left borders of the cropped image. Note that block
overlap at the lower and right borders can happen when the
upper left corner of a block is placed near the border.
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The algorithm consists of three stages. In Stage 1,
the probabilities of placing blocks of different colors at
random locations of the extended canvas are equal to the
desired color percentages. The iterative block placement
continues until the deviation D, computed as the sum of the
absolute differences between the target and the current color
percentages, is below an initial (higher) threshold Th.

However, as we mentioned above, due to the random
block overlap and partial placements (near the borders), the
iterative placement procedure is not guaranteed to converge
to the desired percentages. So, once the initial threshold is
achieved, we need to adjust the placement probabilities in
order to facilitate convergence. The iterations will continue
in Stage 3, but first we have to make sure that there are no
‘‘unpainted’’ pixels in the canvas.

Fig. A1(c) shows the resulting texture after the first stage.
Note that there are some ‘‘unpainted’’ background pixels in
the canvas, shown in black in the figure. In Stage 2, we
check if there are any ‘‘unpainted’’ pixels in the canvas. If
this is the case, we use connected component labeling to
find all the connected regions in the background.We ‘‘paint’’
each connected region with one dominant color as shown in
Fig. A1(d). The fraction of regions painted with each of the
dominant colors is based on the revised (see below) color
percentages, not taking into consideration the number of
pixels in each region; the exact number of pixels assigned
to each color at this stage is not important for algorithm
convergence.

In Stage 3, the placement probabilities are updated at
the end of each iteration in order to enable and accelerate
convergence. The idea is to base the probabilities on
the differences between the actual and the target color
percentages 1pk = p̂k − pk . The revised color probabilities
are then obtained as the normalized differences p̃k =
1pk/

∑
m 1pm. The third stage ends when the deviation is

below a final (lower) threshold Tl .

APPENDIX B. BLOB SCALE ESTIMATION
We propose an efficient method for calculating the average
linear scale (in pixels) of the blobs with the same color as
shown in Figure B1 and described in Algorithm 2.

Given an input K -level image I, each level of which
is painted with a different (dominant) color, and a target
level (color), we first generate a binary image Ibw with only
the blobs of the target color C. To separate the touching
blobs into individual objects, we apply marker-controlled
watershed segmentation [46] to the binary image. We first
apply the watershed transform to the binary image as a seg-
mentation function. To reduce over-segmented regions gen-
erated by the watershed transformation, the segmentation
function can be improved by using the marker-controlled
watershed segmentation. The marker-controlled watershed
segmentation generally utilizes markers for foreground and
background to solve the over-segmentation problem. Since
the binary image Ibw automatically separates foreground

Figure B1. Estimation of the average scale of blobs in given target color (Algorithm 2).

J. Percept. Imaging 010401-18 Jan.-June 2020
IS&T International Symposium on Electronic Imaging 2020 Human Vision and Electronic Imaging



Wang et al.: Influence of texture structure on the perception of color composition

objects (blobs) and background as markers, we can directly
fit the segmentation function to itsminima at foreground and
background locations. Id is the ridge line map of the fitted
segmentation. Iwat is the segmented result after applying Id
to Ibw. The different colors represent the different connected
components.

Once we get the image Iwat with separated blobs, each
painted with a different color, as shown in Fig. B1, we apply
a line-based calculation to get the average scale. For each
row in the image, we collect all segments of horizontal lines
belonging to the blobs. The average horizontal length Lh is
the mean of all segments of horizontal lines across the whole
image. Similarly, we collect all segments of vertical lines of
the blobs and compute the average vertical length Lv. The
average area of the target color blobs is the product of Lh and
Lv. We use the square root of the area as the linear scale of
the target color blobs.

REFERENCES
1 B. L. Anderson and J. Kim, ‘‘Image statistics for surface reflectance
perception,’’ J. Vis. 9, 1–17 (2009).

2 J. Beck, ‘‘Similarity grouping and peripheral discriminability under
uncertainty,’’ Am. J. Psychol. 85, 1–19 (1972).

3 J. R. Bergen, ‘‘Theories of visual texture perception,’’ in Spatial Vision,
ser. Vision and Visual Dysfunction, edited by D. Regan (CRC Press,
Cambridge, MA, 1991), Vol. 10, pp. 114–134.

4 J. Besag, ‘‘Spatial interaction and the statistical analysis of lattice systems,’’
J. Royal Statist. Soc. B 26, 192–236 (1974).

5 J. Besag, ‘‘On the statistical analysis of dirty pictures,’’ J. Royal Statist. Soc.
B 48, 259–302 (1986).

6 C. Bordenave, Y. Gousseau, and F. Roueff, ‘‘The dead leaves model: a
general tessellation modeling occlusion,’’ Adv. Appl. Probab. 38, 31–46
(2006).

7 J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, ‘‘Adaptive per-
ceptual color-texture image segmentation,’’ IEEE Trans. Image Process.
14, 1524–1536 (2005).

8 C. Chubb, J. Darcy, M. Landy, J. Econopouly, J. Nam, D. Bindman,
and G. Sperling, ‘‘The scramble illusion: Texture metamers,’’ in Oxford
Compendiumof Visual Illusions, edited byA.G. Shapiro andD. Todorovic
(Oxford University Press, New York, 2015).

9 Y. Deng, B. S. Manjunath, C. Kenney, M. S. Moore, and H. Shin, ‘‘An
efficient color representation for image retrieval,’’ IEEE Trans. Image
Process. 10, 140–147 (2001).

10 M. N. Do and M. Vetterli, ‘‘Texture similarity measurement using
Kullback-Leibler distance on wavelet subbands,’’ Proc. Int. Conf. Image
Proc. 3, 730–733 (2000).

11 A. L. Edwards, Techniques of Attitude Scale Construction (Ardent Media,
New York, NY, 1983).

12 S. L. Elliott, J. L. Hardy, M. A. Webster, and J. S. Werner, ‘‘Aging and blur
adaptation,’’ J. Vis. 7, 1–9 (2007).

13 R. T. Eskew and R. M. Boynton, ‘‘Effects of field area and configuration
on chromatic and border discrimination,’’ Vis. Res. 27, 1835–1844 (1987).

14 L. He, ‘‘A clustering approach for color texture segmentation,’’ Ph.D.
dissertation (Northwestern University, Evanston, IL, 2012).

15 L. He and T. N. Pappas, ‘‘An adaptive clustering and chrominance-based
merging approach for image segmentation and abstraction,’’ Proc. Int’l.
Conf. Image Proc. (IEEE, Piscataway, NJ, 2010), pp. 241–244.

16 Y.-X. Ho,M. S. Landy, and L. T. Maloney, ‘‘How direction of illumination
affects visually perceived surface roughness,’’ J. Vis. 6, 634–648 (2006).

17 Y.-X. Ho, M. S. Landy, and L. T. Maloney, ‘‘Conjoint measurement of
gloss and surface texture,’’ Psychological Sci. 19, 196–204 (2008).

18 Y.-X. Ho, L. T. Maloney, and M. S. Landy, ‘‘The effect of viewpoint on
perceived visual roughness,’’ J. Vis. 1, 1–16 (2007).

19 B. Julesz, ‘‘Visual pattern discrimination,’’ IRE Trans. Inf. Theory 8, 84–92
(1962).

20 B. Julesz, ‘‘Textons, the elements of texture perception and their
interactions,’’ Nature 290, 91–97 (1981).

21 B. Julesz and B. E. Rogowitz, ‘‘AI and early vision – Part II,’’ in Human
Vision, Visual Proc., and Digital Display, Ser. Proc. SPIE, edited by B. E.
Rogowitz (SPIE, Los Angeles, CA, 1989), Vol. 1077, pp. 246–268.

22 E. Kimura, ‘‘Averaging colors of multicolor mosaics,’’ J. Opt. Soc. Am. A
35, B43–B54 (2018).

23 R. Kindermann and J. L. Snell, Markov Random Fields and their
Applications (American Mathematical Society, Providence, RI, 1980).

24 F. A. A. Kingdom, Interactions of Color VisionwithOther VisualModalities
(Springer, Cham, 2016), pp. 219–241.

25 I. Kuriki, ‘‘Testing the possibility of average-color perception from
multi-colored patterns,’’ Opt. Rev. 11, 249–257 (2004).

26 M. S. Landy, ‘‘Texture analysis and perception,’’ in The New Visual
Neurosciences, edited by J. S. Werner and L. M. Chalupa (MIT Press,
Cambridge, MA, 2014), pp. 639–652.

27 A. B. Lee, D. Mumford, and J. Huang, ‘‘Occlusion models for natural
images: A statistical study of a scale-invariant dead leaves model,’’ Int. J.
Comput. Vis. 41, 35–39 (2001).

28 Y. Linde, A. Buzo, and R. M. Gray, ‘‘An algorithm for vector quantizer
design,’’ IEEE Trans. Commun. COM-28, 84–95 (1980).

29 W. Y. Ma, Y. Deng, and B. S. Manjunath, ‘‘Tools for texture/color based
search of images,’’ inHuman Vision and Electronic Imaging II. Proc. SPIE,
edited by B. E. Rogowitz and T. N. Pappas (SPIE, San Jose, CA, 1997), Vol.
3016, pp. 496–507.

30 B. S. Manjunath and W. Y. Ma, ‘‘Texture features for browsing and
retrieval of image data,’’ IEEE Trans. Pattern Anal. Mach. Intell. 18,
837–842 (1996).

31 B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada, ‘‘Color
and texture descriptors,’’ IEEE Trans. Circuits Syst. Video Technol. 11,
703–715 (2001).

32 J. L. Mannos and D. J. Sakrison, ‘‘The effects of a visual fidelity criterion
on the encoding of images,’’ IEEE Trans. Inform. Theory IT-20, 525–536
(1974).

33 P.Maragos, R.W. Schafer andM.A. Butt (Eds.)MathematicalMorphology
and Its Applications to Image and Signal Processing (Springer Science &
Business Media, 2012), Vol. 5.

34 P. J. Marlow, J. Kim, and B. L. Anderson, ‘‘The perception and misper-
ception of specular surface reflectance,’’ Current Biology 22, 1909–1913
(2012).

35 G. Matheron, Random Sets and Integral Geometry (JohnWiley and Sons,
New York, 1975).

36 J. Maule and A. Franklin, ‘‘Accurate rapid averaging of multihue
ensembles is due to a limited capacity subsampling mechanism,’’ J. Opt.
Soc. Am. A 33, A22–A29 (2016).

37 A. Mojsilović, J. Hu, and E. Soljanin, ‘‘Extraction of perceptually impor-
tant colors and similaritymeasurement for imagematching, retrieval, and
analysis,’’ IEEE Trans. Image Process. 11, 1238–1248 (2002).

38 A. Mojsilović, J. Kovačević, J. Hu, R. J. Safranek, and S. K. Ganapathy,
‘‘Matching and retrieval based on the vocabulary and grammar of color
patterns,’’ IEEE Trans. Image Process. 1, 38–54 (2000).

39 I. Motoyoshi, S. Nishida, L. Sharan, and E. H. Adelson, ‘‘Image statistics
and the perception of surface qualities,’’ Nature 447, 206–209 (2007).

40 T. Ojala, M. Pietikäinen, and T. Mäenpää, ‘‘Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,’’
IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002).

41 I. Omer and M. Werman, ‘‘Color lines: Image specific color representa-
tion,’’ IEEEConf. Computer Vision and Pattern Recognition (CVPR) (IEEE,
Piscataway, NJ, 2004), pp. 946–953.

42 S. Padilla, O. Drbohlav, P. R. Green, A. Spence, and M. J. Chantler,
‘‘Perceived roughness of 1/f[beta] noise surfaces,’’ Vis. Res. 48, 1791–1797
(2008).

43 T. N. Pappas, ‘‘An adaptive clustering algorithm for image segmentation,’’
IEEE Trans. Signal Process. SP-40, 901–914 (1992).

44 T. N. Pappas, J. Chen, andD. Depalov, ‘‘Perceptually based techniques for
image segmentation and semantic classification,’’ IEEE Commun. Mag.
45, 44–51 (2007).

45 T. N. Pappas, D. L. Neuhoff, H. de Ridder, and J. Zujovic, ‘‘Image analy-
sis: Focus on texture similarity,’’ Proc. IEEE 101, 2044–2057 (2013).

J. Percept. Imaging 010401-19 Jan.-June 2020
IS&T International Symposium on Electronic Imaging 2020 Human Vision and Electronic Imaging

https://doi.org/10.2307/1420955
https://doi.org/10.1239/aap/1143936138
https://doi.org/10.1109/TIP.2005.852204
https://doi.org/10.1109/83.892450
https://doi.org/10.1109/83.892450
https://doi.org/10.1109/83.892450
https://doi.org/10.1167/7.6.8
https://doi.org/10.1016/0042-6989(87)90112-X
https://doi.org/10.1167/6.5.8
https://doi.org/10.1111/j.1467-9280.2008.02067.x
https://doi.org/10.1167/7.1.1
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1038/290091a0
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1007/s10043-004-0249-2
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/TIT.1974.1055250
https://doi.org/10.1016/j.cub.2012.08.009
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1109/TIP.2002.804260
https://doi.org/10.1109/83.817597
https://doi.org/10.1038/nature05724
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1016/j.visres.2008.05.015
https://doi.org/10.1109/78.127962
https://doi.org/10.1109/MCOM.2007.284537
https://doi.org/10.1109/JPROC.2013.2262912
https://doi.org/10.2307/1420955
https://doi.org/10.2307/1420955
https://doi.org/10.2307/1420955
https://doi.org/10.1239/aap/1143936138
https://doi.org/10.1239/aap/1143936138
https://doi.org/10.1239/aap/1143936138
https://doi.org/10.1109/TIP.2005.852204
https://doi.org/10.1109/TIP.2005.852204
https://doi.org/10.1109/TIP.2005.852204
https://doi.org/10.1109/TIP.2005.852204
https://doi.org/10.1109/83.892450
https://doi.org/10.1109/83.892450
https://doi.org/10.1109/83.892450
https://doi.org/10.1109/83.892450
https://doi.org/10.1167/7.6.8
https://doi.org/10.1167/7.6.8
https://doi.org/10.1016/0042-6989(87)90112-X
https://doi.org/10.1016/0042-6989(87)90112-X
https://doi.org/10.1167/6.5.8
https://doi.org/10.1167/6.5.8
https://doi.org/10.1111/j.1467-9280.2008.02067.x
https://doi.org/10.1111/j.1467-9280.2008.02067.x
https://doi.org/10.1167/7.1.1
https://doi.org/10.1167/7.1.1
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1038/290091a0
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1364/JOSAA.35.000B43
https://doi.org/10.1007/s10043-004-0249-2
https://doi.org/10.1007/s10043-004-0249-2
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/TCOM.1980.1094577
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/76.927424
https://doi.org/10.1109/TIT.1974.1055250
https://doi.org/10.1109/TIT.1974.1055250
https://doi.org/10.1109/TIT.1974.1055250
https://doi.org/10.1109/TIT.1974.1055250
https://doi.org/10.1016/j.cub.2012.08.009
https://doi.org/10.1016/j.cub.2012.08.009
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1364/JOSAA.33.000A22
https://doi.org/10.1109/TIP.2002.804260
https://doi.org/10.1109/TIP.2002.804260
https://doi.org/10.1109/TIP.2002.804260
https://doi.org/10.1109/TIP.2002.804260
https://doi.org/10.1109/83.817597
https://doi.org/10.1109/83.817597
https://doi.org/10.1109/83.817597
https://doi.org/10.1109/83.817597
https://doi.org/10.1038/nature05724
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1016/j.visres.2008.05.015
https://doi.org/10.1016/j.visres.2008.05.015
https://doi.org/10.1109/78.127962
https://doi.org/10.1109/78.127962
https://doi.org/10.1109/78.127962
https://doi.org/10.1109/78.127962
https://doi.org/10.1109/MCOM.2007.284537
https://doi.org/10.1109/MCOM.2007.284537
https://doi.org/10.1109/MCOM.2007.284537
https://doi.org/10.1109/JPROC.2013.2262912
https://doi.org/10.1109/JPROC.2013.2262912


Wang et al.: Influence of texture structure on the perception of color composition

46 K. Parvati, P. Rao, and M. M. Das, ‘‘Image segmentation using gray-scale
morphology and marker-controlled watershed transformation,’’ Discrete
Dyn. Nat. Soc. 2008 (2009).

47 B. Pinna and S. Grossberg, ‘‘The watercolor illusion and neon color
spreading: a unified analysis of new cases and neural mechanisms,’’ J. Opt.
Soc. Am. A 22, 2207–2221 (2005).

48 A. B. Poirson and B. A. Wandell, ‘‘Appearance of colored patterns:
pattern-color separability,’’ J. Opt. Soc. Am. A 10, 2458–2470 (1993).

49 Y. Rubner, C. Tomasi, and L. J. Guibas, ‘‘The earth mover’s distance as a
metric for image retrieval,’’ Int. J. Comput. Vis. 40, 99–121 (2000).

50 H. S. Sawhney and J. L. Hafner, ‘‘Efficient color histogram indexing,’’ Proc.
Int’l. Conf. Image Proc. (IEEE Computer Society, Washington, DC, 1994),
pp. 66–70.

51 N. C. Silver andW. P. Dunlap, ‘‘Averaging correlation coefficients: Should
Fisher’s z transformation be used?,’’ J. Appl. Psychology 72, 146 (1987).

52 M. Swain and D. Ballard, ‘‘Color indexing,’’ Int. J. Computer Vision 7,
11–32 (1991).

53 E. Switkes, A. Bradley, and K. K. D. Valois, ‘‘Contrast dependence and
mechanisms of masking interactions among chromatic and luminance
gratings,’’ J. Opt. Soc. Am. A 5, 1149–1162 (1988).

54 L. L. Thurstone, ‘‘A law of comparative judgment,’’ Psychological Review
34, 273 (1927).

55 J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles (Addison,
Reading, MA, 1974).

56 A. J. van Doorn, H. de Ridder, and J. J. Koenderink, ‘‘Pictorial relief for
equiluminant images,’’ in Human Vision and Electronic Imaging X, Ser.
Proc. SPIE, edited by B. E. Rogowitz, T. N. Pappas, and S. J. Daly (SPIE,
San Jose, CA, 2005), Vol. 5666.

57 J. Webster, P. Kay, and M. A. Webster, ‘‘Perceiving the average hue of
color arrays,’’ J. Opt. Soc. Am. A 31, A283–A292 (2014).

58 M.W. A. Wijntjes and S. C. Pont, ‘‘Illusory gloss on Lambertian surfaces,’’
J. Vis. 10, 1–12 (2010).

59 J. Zujovic, ‘‘Perceptual texture similarity metrics,’’ Ph.D. dissertation
(Northwestern University, Evanston, IL, 2011).

60 J. Zujovic, T. N. Pappas, and D. L. Neuhoff, ‘‘Structural similarity metrics
for texture analysis and retrieval,’’ Proc. Int’l. Conf. Image Proc. (IEEE,
Piscataway, NJ, 2009), pp. 2225–2228.

61 J. Zujovic, T. N. Pappas, and D. L. Neuhoff, ‘‘Structural texture similarity
metrics for image analysis and retrieval,’’ IEEE Trans. Image Process. 22,
2545–2558 (2013).

J. Percept. Imaging 010401-20 Jan.-June 2020
IS&T International Symposium on Electronic Imaging 2020 Human Vision and Electronic Imaging

https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1037/0021-9010.72.1.146
https://doi.org/10.1007/BF00130487
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1037/h0070288
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1167/10.9.13
https://doi.org/10.1109/TIP.2013.2251645
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1155/2008/384346
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.22.002207
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1364/JOSAA.10.002458
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1037/0021-9010.72.1.146
https://doi.org/10.1037/0021-9010.72.1.146
https://doi.org/10.1037/0021-9010.72.1.146
https://doi.org/10.1007/BF00130487
https://doi.org/10.1007/BF00130487
https://doi.org/10.1007/BF00130487
https://doi.org/10.1007/BF00130487
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1364/JOSAA.5.001149
https://doi.org/10.1037/h0070288
https://doi.org/10.1037/h0070288
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1364/JOSAA.31.00A283
https://doi.org/10.1167/10.9.13
https://doi.org/10.1167/10.9.13
https://doi.org/10.1109/TIP.2013.2251645
https://doi.org/10.1109/TIP.2013.2251645
https://doi.org/10.1109/TIP.2013.2251645
https://doi.org/10.1109/TIP.2013.2251645

	Introduction
	Background
	Proposed Approach
	Related Work

	Texture Analysis and Synthesis
	Color Composition Feature Extraction
	Texture Generation
	Isotropic Blobs
	Geometric Blocks


	Empirical Studies
	Test Setup
	Participants
	Apparatus
	Texture Stimuli
	Texture Stimuli for Study 1: Posterized versus Varying Percentage Isotropic Blobs
	Texture Stimuli for Study 2: Posterized versus Varying Scale Square Blocks
	Texture Stimuli for Study 3: Varying Shape of Rectangular Blocks
	Procedure


	Analysis of the Results
	Analysis of Study 1
	Analysis of Study 2
	Analysis of Study 3

	Modeling the Results
	Discussion and Conclusions
	Appendix A. Texture Synthesis Algorithms
	Isotropic Blobs
	Geometric Blocks

	Appendix B. Blob Scale Estimation
	References

